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1. Introduction: Molecular Approach to Viscoelasticity

1.1 The Physical Origin of Viscoelasticity

In our course on linear viscoelasticity, we used phenomenological models so far (springs,
dashpots) which have no direct link with what we know already on the physics of polymers,
namely that they are generally made up of more or less flexible molecular chains. On the other
hand, we have already established that an elastomer, i.e. a lightly crosslinked flexible
polymer deformed at a temperature above its T; behaves like an "entropic" spring with
a Young's modulus

E = 3NkT

where N is the density of crosslinking points. We also got a phenomenological description
of linear behavior (with small strains) above the glass transition according to which the
modulus of relaxation, for example, is given by
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E(t)=E, + ZEie_T_i
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where t; are "relaxation times" and Ei are arbitrary constants, which can be adjusted to
reproduce the observed behavior. In the case of an elastomer, we can assume that t > 7; and
that E(t) — E. Thus, by comparing the two expressions above, E,, = 3NkT. We can rewrite
the above equation as follows:

n
E(t,T) -t
=14 Z ae T
p,T2E(t,T1)

n _ tl n _ tZ
= = e Ti(T1) e Ti(T2)
o1 E.(t1,T1) = E(t3, T) (20: ae 1 /20: a;e 2 >

with o = 1 and to(T1) = oo. If all 7; show the same dependence with T, we can replace them by
Tiof (T):

n

n
__ti b
E.(t,T,) = E(t,, T,) (Z ;e T (D) /Z ae Tf(m)
0

0

Thus, if we know f{T), the Tio, the a; and E(tz, T2), we can calculate E/(t1, T1) and therefore E(t1,
T1) for any values of t1 and T'1. This is the principle of time-temperature superposition,! and
as long as we stay in the temperature window immediately above T, we can use the WLF
equation to obtain f{T). This equation has the advantage of being supported by the theory of
free volume or at least by observations of the change in viscosity near T.

On the other hand, one does not know yet how to connect t;, and a; to the structure of the
chains. In addition, in a non-crosslinked polymer (a thermoplastic), there is a rubbery plateau
which is limited in temperature and time, i.e. that 7o(T) has a finite value. How do you explain
the existence of a rubbery plateau in the absence of crosslinking points?

1.2 Entanglement

The answer to the last question in section 1.1 is "entanglement". So far, we have referred to
entanglement in rather vague terms, sometimes saying that the chains of a molten polymer
must be strongly "entangled" and are significantly constricted due to the presence of other
chains. We could therefore imagine that these constraints play the same role as the chemical
crosslinks in a conventional elastomer, which would explain the existence of the rubbery

! (In other words, E-(t1, T1) = E(t2, T2), i.e. we have the same behavior, when t1/f(T1) = t2/f(T2) = tret/ [ (Tref) =
t1/tref = ar(T1, Trer), or, in the frequency domain, wret/w = ar(T, Tref). (For recall, if T > Tret, log ar(T, Tref) <1
according to the equation of WLF and the curves of E;(t) are shifted towards shorter times than at Tref, while the
curves of E-(w) are shifted to higher frequencies higher than Tref)
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plateau. But can we find a more precise description of this phenomenon that will allow us to
quantify the effect of entanglement on the mechanical behavior of a polymer and to relate it to
the structure of the polymer?

1.3 Disentanglement?

As it was mentioned at the end of 1.1, the rubbery plateau has a limited extent in temperature
or time, and the effective value of 7o(T) is therefore not infinite for a thermoplastic. Thus, if a
chain can be entangled with its neighbors, it can also become “unentangled” if its mobility is
high enough or if given enough time. This disentanglement is often described in terms of
"reptation”, a word that evokes the movement of a snake (or reptile) which tries to squeeze
between obstacles. There too, we would like to find an accurate description of this phenomenon
in terms of the polymer structure and, in particular, of its molar mass, since we already know
that the observed extent of the plateau depends strongly on M.

2. Isolated Chain Dynamics in a Solvent: the Rouse Model

2.1 Isolated Chains in a Solvent

The viscoelastic behavior of a very dilute solution is expected to reflect the dynamics of an
isolated chain as long as it interacts with the solvent. Rouse proposed the following
simplification: We consider a freely jointed chain containing n bonds divided into m-1
“subchains” of identical length, connected by m “balls”, which interact with the solvent. If the
subchains are long enough, they will have a Gaussian behavior and therefore a mean square
distance between ends

2 2
Rs = =7t (1)

If the ends of a given subchain are defined by the vectors 7; and 7, ,, the force of contraction
acting along the vector 7., — 7} is given by

3kT

f= Rz (Fip1 —72) (2)

The force on the ball located at 7; must be in equilibrium with the viscous forces acting on this
ball:

o
o 3kT G—7i)+ 3kT @ 7 = dr;  3kT 27 — 7 2 3)
=— " -1 — 1y — 1) =—&—=— =T —Tiy1
R% l L R% i+ l dt R121 L l 1+
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where the coefficient ¢ is in [Ns/m]. There are m such coupled equations for the entire chain.
In order to solve them one carries out a “transform of normal coordinates” (see the standard
texts) to obtain m independent equations each corresponding to a “mode” of different vibration.
Thus, for a solution containing N independent chains per unit of volume:

m t
G(t) = NkTZ e T
p=1
w3t
1+w 15

m 2
G'(t) = NkT Z —
p=1

G'(t) = NkT mE i
® = 1+ wzrg
p=1

T, = 5 sin™? (n—p) =12..m
P~ 24kT 2m+ 1)) P e
6m2p2kT P (4)

Here, each p corresponds to a mode of vibration with p nodes along the chain. The longest 7,
therefore corresponds to relatively long chain lengths. We see that:

(i) These equations have the same form as the expressions derived from the Generalized
Voigt-Maxwell model, except that here all Ej are equal to NkT.

(ii) The dependence of all relaxation times 7, with the temperature is that of £(T)/kT.
(iii) The choice of m is arbitrary, as long as t > 1,,,.

(iv) Thelongestrelaxation time, 7;, which involves the whole chain, called the Rouse
relaxation time, is proportional to the squared molar mass, M2, because {ém?R,?
=émnl? = &on2l?2 «« M2, where &pis the “monomeric friction coefficient”.

(v) At the longest frequencies, we find the liquid behavior of the terminal regime of
phenomenological models, i.e. G’ ~ w? and G” ~ w.

(vi) Atintermediate frequencies, G’ =~ G" ~ w!/2,

2.2 Comparison with Experiments

Initially, this model was intended to describe the behavior of a dilute solution. We can do
rheological measurements and determine G’ and G” and we can also determine the diffusion
coefficient of chains, which is given by
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according to Rouse's model (see standard texts for development). However, experiments rather
show that D « M-1/2 and 71 « M3/2, Rouse's model doesn't work for diluted solutions. Indeed,
we get a better agreement, when we take the influence of the chain on the local speed of the
solvent into account, like in Zimm's theory, which we will not consider here.

In contrast, the Rouse Model is well suited for non-crosslinked polymers above Tg (where
the "solvent" consists of other, relatively small mobile chains), as shown on Slide 276, where
we find the same dependence with w, provided that

(i) The molar mass, M, is not too high. Otherwise, we observe a rubbery plateau, which
is not predicted by the Rouse model.

(ii) The time (or 1/w) is not too short, because the Rouse model is not applicable at very
short time scales

At the shortest times, the behavior is dominated by the shortest 7; and therefore the values of
p are high according to Equation 4. However, if the number of n/p segments involved in the
relaxation becomes too low (typically < 8), we can no longer use Equation 2 and the model is
no longer valid.

3. Entanglement and Disentanglement

The Rouse Model is only valid for relatively small M because it does not consider
entanglement, i.e. the phenomenon that explains the existence of the rubbery plateau. But
what is entanglement?

3.1 Physical Constraints for a Chain in a Condensed Polymer

It is assumed that the chains of an amorphous polymer adopt a Gaussian conformation in the
condensed state (molten state, glassy). We did a little calculation for a typical polymer (Slide
282), which establishes that the chains are strongly interpenetrated, i.e. that the volume
occupied by a random coil which has a radius of gyration, rg, contains on average dozens of
other chains. If we admit that one chain cannot cross another, we can consider that one given
chain is trapped in sort of a “cage” made up from its neighbors (cf. Slide 283). We can therefore
imagine that the dynamics of each chain are strongly influenced by these constraints, even at
temperatures well above T; where it is assumed that the deformations do not involve a change
of internal energy. These constraints must be particularly severe when it comes to cooperative
movements involving long chain lengths, that is for the first Rouse modes (p =1, 2, ...).
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3.2 First notions of entanglement: static models

First, we can make an analogy between the rubbery plateau of a non-crosslinked polymer and
the modulus of an elastomer, assuming that the constraints on a chain due to its neighbors act
as cross-linking points. The process is then very simple: we define an "entanglement density",
Ne, according to

E, = 3N, kT (6),

where E. is the Young’ modulus? which corresponds to the rubbery plateau (in fact, the plateau
is not perfectly flat but that doesn't matter too much here).

This is the model of the "entanglement network" whereby a non-crosslinked polymer is
considered as a network of subchains of average molar mass M., called the "mass
between entanglements” linked by “entanglement points”.

Obviously, if M < 2M. = M., the chains are not long enough to constitute a network and, indeed,
we do not observe a rubbery plateau under these conditions (using M. estimated from
measurements on very long chains). M. is therefore a key parameter, because it marks the
threshold of M where the characteristic properties of long chains begin to be manifested.
We will see next week that M. is very important for the resistance to large deformations, for
example, as well as for the behavior in the liquid state (i.e. beyond the rubbery plateau).

M. and the density of entanglements, Ne, are specific parameters of each type of polymer,
but vary greatly depending on the polymer, as shown in the table (cf. Slide 285).

Table 1. Characteristic parameters of common thermoplastics
Densité (g/cm3) Me.(g/mol) C~ N.(mmol/cm?3)

PS 1.05 18700 10.8 0.0561
PMMA 1.17 9200 8.2 0.127
PVC 14 5560 7.6 0.252
PA6 1.08 2480 6.2 0.435
POM 1.25 2550 7.5 0.49

PA66 1.07 1990 6.1 0.537
PE 0.85 1390 6.8 0.613
PC 1.2 1790 2.4 0.725
PET 833 1630 4.2 0.815

2 We can also measure G. for example, in which case G. = NokT.
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Establishing correlations between the chemical structure of the polymer and M. is not as
obvious as in the case of Tz and Tm. Nevertheless, we notice that two factors are important, the
rigidity of the chain and the number of chains per unit volume. Thus, rigid chains with a low
molar mass per catenary bond, My, may show a higher entanglement density than flexible
chains with a rather high My, (compare polyethylene and polycarbonate in Table 1). On the other
hand, bulky chains, yet not particularly rigid, show low entanglement densities (cf.
polystyrene). This has led to attempts to establish empirical relationships between M, C and
My, such that M. = 3M,C«?2, but the correlations are not strong enough for this kind of equation
to be really reliable.

Finally, in the case of an elastomer, entanglements are also present and contribute to the
effective crosslinking density as follows

Ngfr = No' + N;* (7),

where Ny is the density of chemical crosslinks, although we tend to ignore the effect of
entanglement in the theory on rubber elasticity.

3.3 Disentanglement: the Tube Model

So far, our static model explains the existence of the rubbery plateau in thermoplastics, but we
haven't explained why the extent of this rubbery plateau is limited. At the same time, we can
wonder whether the notion of "points" of entanglement has some physical reality. Indeed, we
need to give up in considering entanglements like well located "knots" in space. The
entanglement network is useful in some contexts, but it is only a static model, and as such it is
not very helpful in understanding "disentanglement” at the end of the plateau, which is clearly
a dynamic phenomenon.

We will therefore use the idea of a cage formed around a given chain by its neighbors (Slide
288). For a very long chain, this cage takes the form of a tube. The chain cannot pass through
the walls of this tube, but if it has some mobility it can escape from the tube at its ends, which
remain open. As the tube follows the contour of the chain, its contour length, L, must also be
proportional to n, the total number of bonds in the chain, and therefore to M.

Suppose now that we apply a deformation to the polymer and therefore to the tube and that we
follow the evolution of the stress (a relaxation test, therefore). To relax the stress after
deformation of the tube, a deformed chain must regain its random conformation. However, it
cannot pass through the walls of the deformed tube. If the tube has a diameter of d, this implies
that only chain segment lengths equal or less than de can relax, ie. adopt a random
conformation. We will now show that d. corresponds to a length of a chain with mass M.

Let’s use Rouse’s model (Equation 4). Assuming that the chain gets stuck in the deformed tube:
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m t
G(t) = NkTZ ¢ T

p=1
Em?R? nl?
T, ¥ ——— for — < d
61%p2kT
- p P (8).
2
_ 7, = o for > > d?
So if: 2p2 4 4 4 2 2
t>»1 _smRs X de __¢mde _ Sode _ ol (%) (9)
¢ 6m2kT ~ n2l* 6m2kTnl? 6m2kTI? 6m2kT \M, ’

L.e. in the rubbery plateau:

nl?
G(t) = NKT —5 = NekT
e
nl> N, M
d2 N M,

Thus, the tube diameter, d., is the distance between the ends of a chain with M., and the
tube itself is therefore a random chain with a contour length

M
L=-—-de (10).

e

However, the chain does not remain blocked in the tube, but leaves the tube after a time
74, called the "disentanglement time" or "reptation time". We can obtain a very simple
scaling law for 74 by remembering Equation 5, which tells us that the diffusion coefficient, D, is
proportional to 1/M according to the Rouse model, and that the length of the tube, L, is
proportional to M. According to Fick's law, the diffusion distance by the chain at a time t is

The chains can thus diffuse a distance L and therefore escape from its tube in one step
> &n M\? M3
~—=>—(—) d? = 6712 (—)
ta =, T kT (Me) e =P \M,) e (12),

where 7. is the time of the start of the rubbery plateau (Equation 9).3

M 3
3 In the more rigorous treatment of Doi and Edwards, for example, we obtain 75 =3 (V) Te
e
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Once the chain is outside the tube, it can return to its random conformation, and the stress will
be completely relaxed. In a simple description, therefore, we can simply replace the Rouse
relaxations, which are blocked by the tube, by a term involving 74 or

d3/nl?

t
G(t) = NkT | e 7 + Z e T (13).
p=1

We can thus summarize the behavior during a relaxation test as shown schematically on Slide
290.

(i) Instant tube and chain deformation (no relaxation, high stress)
(ii) Rapid Rouse-type relaxation inside the tube up to t = 7

(iii) Rubbery plateau for te <t <74

(iv) The chain begins to escape from the tube when t = 74 (reptation)

(v) Fully restored random conformation, relaxation terminated when t >> 74

We therefore have a complete description of the observed behavior of a non-crosslinked
polymer of mass M > M. in relaxation as well as for an elastomer if 74 is infinite and de
corresponds to the effective distance between crosslinking points.

We are not going to discuss other viscoelastic phenomena here, but we have already
reproduced important results of the tube theory developed by DeGennes and Doi and Edwards
in the 1970s, which provides a fairly complete description of viscoelasticity of polymers above
Tg, including the non-linear behavior. The general formulation of this theory is rather complex,
but is the basis of many numerical simulations which are widely used in industry for modelling
of, for example, the filling of a mold.

What are these important results? First, the time to disentangle (or the reptation time) zq is
proportional to M3, while the time 7., which corresponds to the start of the rubbery
plateau, depends only on de and M. (Equation 9). Thus, by increasing M, one greatly
increases the extent of the rubbery plateau. However, both show the same dependence with
temperature and the time temperature superposition can therefore be justified until the
transition zone, even in the presence of the rubbery plateau. We also see that a chain with M <
M, does not have a rubbery plateau, in accordance with experiments and the network
model.

Other important results, which have been verified by experiments:

Self-Diffusion Coefficient of an Entangled Chain
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When the chain leaves its inner tube in the time 74, its center of mass moves by an average
distance of approximately R.. According to Fick's law (Equation 11), the self-diffusion
coefficient is therefore

D =—~—~]\/I_2 (14)

Viscosity in the Terminal Zone

In the regime of viscous behavior (t > 74), the theory of Doi and Edwards predicts that

M
7]~V; M < Mc = 2Me (15)

So, there is a change in slope of the n vs. M curve, when M is equal to M, which is called the
critical molar mass. This is verified for amorphous polymers, and provides a way to obtain M.
for semi-crystalline polymers, where the rubbery plateau is obscured by crystallinity and we
cannot measure Ee. In practice, we rather observe n = n,(M,,/M,)3>* when M,, > M, but this
can be explained by the dispersity and the fact that the tube is not completely immutable, as it
itself is made up of chains capable to diffuse. What is important, especially for the processing,
is that the viscosity is very strongly dependent on the molar mass. So, if the ultra-high molecular
weight polyethylene (UHMWPE) is highly praised for its mechanical performance, it cannot be
injected because its viscosity is too high. On the other hand, an HDPE of low molar mass is easy
to process, but risks to perform in a disappointing manner, particularly in creep.

4. Summary

e Isolated chains may be described using the Rouse model (springs and beads): better
agreement with dynamics in dilute solution when hydrodynamic interactions are taken
into account (Zimm model)

e For sufficiently long chains in the condensed state, entanglement effects must be taken
into account. The existence of a rubbery plateau above T for non-crosslinked polymers
has led to the idea of the “entanglement network” and M.. For M < 2M., entanglement
effects are not seen.

e For sufficiently long times and/or at sufficiently high temperatures, entanglements can
no longer be considered permanent. General descriptions of viscoelasticity use “tube
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models” which allow for disentanglement by reptation. These account for the strong
influence of M on the melt viscosity, diffusion etc.
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